Василиса▶ Я жду вашего обращения. Что Вы хотите узнать?
Логотип
Кажущееся преломление прямых предметов, косо пересекающих границу раздела сред с разной оптической плотностью

Преломле́ние ( рефра́кция ) — изменение направления луча ( волны ), возникающее на границе двух сред , через которые этот луч проходит или в одной среде, но с меняющимися свойствами, в которой скорость распространения волны неодинакова .

Феномен преломления объясняется законами сохранения энергии и сохранения импульса . При изменении передающей среды изменяется скорость волны, а её частота остаётся такой же. Преломление света через стекло или воду — наиболее простой и очевидный пример искажения луча, но законы преломления действительны для любых волн, — электромагнитных , акустических и даже морских. В общем случае закон преломления описывается «Законом Снеллиуса» .

Термины « рефракция » и « преломление » взаимозаменяемы ; традиционно, термин «рефракция» чаще употребляется для описания излучения в средах, показатель преломления в которых от точки к точке меняется плавно (траектория луча имеет вид плавно искривляющейся линии), в то время как термин «преломление» чаще используется для описания резкого изменения траектории луча на границе сред из-за высокой разницы в их показателях преломления . Действует при этом один и тот же закон — зависимость скорости волны от показателя преломления конкретной передающей среды.

Иногда специфика передающей среды или источника излучения требует выделить исследования конкретно этой рефракции в особый раздел. Так, рефракцию человеческого глаза изучает офтальмология , в то время как рефракцию звука в воде изучает гидроакустика , рефракцию небесных светил — астрономия и так далее.

Изучение законов преломления имеет фундаментальное значение для науки и техники. Их применение в разных областях знаний позволяет создавать точные оптические приборы (телескопы, микроскопы, фотоаппараты, кинокамеры, очки, контактные линзы и т. п.), исследовать химическую структуру соединений и определять состав химических смесей , получать точные геодезические и астрономические координаты , создавать оптимальные системы связи и многое другое.

Физика явления

Измерение углов падения и преломления луча света
Построение преломлённой волны с помощью принципа Гюйгенса — Френеля
Преломление волновых фронтов на поверхности раздела двух сред

Преломление наблюдается, когда фазовые скорости электромагнитных волн в контактирующих средах различаются (см. показатель преломления ). В этом случае полное значение скорости волны должно быть разным по разные стороны границы раздела сред. Однако если проследить движение, например, гребня волны вдоль границы раздела — то соответствующая скорость должна быть одинаковой для обеих «половинок» волны (поскольку при пересечении границы максимум волны остается максимумом, и наоборот; то есть можно говорить о синхронизации падающей и прошедшей волны во всех точках границы, см. верхний рисунок). Из простого геометрического построения получаем, что скорость движения точки пересечения гребня с линией, наклонённой к направлению распространения волны под углом , будет равна , где  — скорость распространения волны.

Это ясно из того, что, пока гребень волны пройдёт в направлении своего распространения (то есть перпендикулярно гребню) расстояние, равное катету треугольника, точка пересечения гребня с границей пройдёт расстояние, равное гипотенузе, а отношение этих расстояний, равное синусу угла, и есть отношение скоростей.

Тогда, приравняв скорости вдоль границы раздела для падающей и прошедшей волн, получим , что эквивалентно закону Снелла , поскольку показатель преломления определяется как отношение скорости электромагнитного излучения в вакууме к скорости электромагнитного излучения в среде: .

В итоге на границе раздела двух сред наблюдается преломление луча, качественно состоящее в том, что углы к нормали к границе раздела сред для падающего и преломлённого луча отличаются друг от друга, то есть ход луча вместо прямого становится ломаным — луч преломляется.

Заметим, что практически тождественным способом вывода закона Снелла является построение прошедшей волны с помощью принципа Гюйгенса — Френеля (см. рисунок).

При движении волны в средах с разными показателями преломления её частота сохраняется, а длина волны изменяется пропорционально скорости.

В изотропной среде для синусоидальной волны, характеризуемой частотой и волновым вектором, перпендикулярным направлению распространения волны, соображения, что составляющая волнового вектора , параллельная границе раздела, должна быть одинаковой до и после прохождения этой границы, приводят к такому же виду закона преломления.

Дополнительно стоит отметить, что волновой вектор фотона равен вектору его импульса , делённому на постоянную Планка , и это даёт возможность естественной физической интерпретации закона Снелла как сохранения проекции импульса фотона на пересекаемую им границу раздела сред.

Полное внутреннее отражение

Тесно связано с преломлением такое явление, как отражение от границы раздела прозрачных сред. В некотором смысле это две стороны одного и того же явления.

Явление полного внутреннего отражения (ПВО) связано с тем, что преломлённой волны, которая бы удовлетворяла закону Снелла , для некоторых углов падения не существует. Это означает, что возникает только отражённая волна и, значит, волна отражается полностью. ПВО возможно при падении волны из среды, где волна распространяется с меньшей фазовой скоростью (бо́льшим показателем преломления), на границу со средой с большей фазовой скоростью распространения такой волны (меньшим показателем преломления).

При постепенном увеличении угла падения по отношению к нормали, в какой-то момент преломленный луч совпадает с границей раздела сред, а затем исчезает — остается только отраженный луч.

Полное преломление

Если вертикально поляризованная волна падает на поверхность раздела под углом Брюстера , то будет наблюдаться эффект полного преломления  — отражённая волна будет отсутствовать.

Преломление в обычной жизни

Двойная радуга — одно из самых красивых явлений, связанных с рефракцией.

Преломление встречается на каждом шагу и воспринимается как совершенно обыденное явление: можно видеть как ложка, которая находится в чашке с чаем, будет «переломлена» на границе воды и воздуха. Тут уместно отметить, что данное наблюдение при некритическом восприятии даёт неверное представление о знаке эффекта: кажущееся преломление ложки происходит в сторону, обратную реальному преломлению лучей света.

Преломление света на границе двух сред даёт парадоксальный зрительный эффект: пересекающие границу раздела предметы в более плотной среде выглядят «преломлёнными вверх»; в то время как луч , входящий в более плотную среду, распространяется в ней под меньшим углом, «преломляется вниз». Этот оптический эффект и приводит к ошибкам в визуальном определении глубины водоёма, которая всегда кажется меньше, чем есть на самом деле.

Преломление, дисперсия и внутреннее отражение света в каплях воды вместе порождают радугу . Из-за дисперсии света капли по-разному преломляют и отклоняют свет разных цветов : сильнее всего преломляются и отклоняются лучи с наименьшей длиной волны ( фиолетовый цвет ), а слабее всего — с наибольшей ( красный цвет ). В результате возникает дуга, окрашенная в различные цвета.

Многократным преломлением (отчасти и отражением) в мелких прозрачных элементах структуры (снежинках, волокнах бумаги, пузырьках) объясняются свойства матовых (не зеркальных) отражающих поверхностей, таких как белый снег, бумага, белая пена.

Рефракцией в атмосфере Земли объясняются многие зрительные эффекты. Например, при определённых метеорологических условиях Земля (с небольшой высоты) представляется наблюдателю как вогнутая чаша (а не часть выпуклого шара). Из-за рефракции кажется, что звёзды «мерцают» . Также, преломление света в атмосфере приводит к тому, что мы наблюдаем восход Солнца (и вообще любого небесного светила) несколько раньше, а закат несколько позже, чем это имело бы место при отсутствии атмосферы . По той же причине на горизонте диск Солнца выглядит немного сплющенным вдоль горизонтали.

Применение

В технике и научных приборах

Явление преломления лежит в основе работы телескопов- рефракторов (научного и практического назначения, в том числе подавляющей доли зрительных труб, биноклей и других приборов наблюдения), объективов фото-, кино- и телекамер, микроскопов , увеличительных стёкол, очков, проекционных приборов, приёмников и передатчиков оптических сигналов, концентраторов мощных световых пучков, призменных спектроскопов и спектрометров , призменных монохроматоров , и многих других оптических приборов, содержащих линзы и/или призмы . Его учёт необходим при расчёте работы почти всех оптических приборов. Всё это относится к разным диапазонам электромагнитного спектра.

В акустике преломление звука особенно важно учитывать при исследовании распространения звука в неоднородной среде и, конечно, на границе разных сред.

Может быть важным в технике и учёт преломления волн другой природы, например, волн на воде, различных волн в активных средах и т. д.

В медицине

Преломление света

Явление преломления используется в таких областях медицины как оптометрия и офтальмология . С помощью фороптера возможно определить аномалии рефракции в глазу пациента, и, проведя несколько тестов с линзами разной оптической силы и с разным фокусным расстоянием , можно подобрать для пациента подходящие очки или контактные линзы .

См. также

Литература

Примечания

  1. Преломление света  — статья в Физической энциклопедии
  2. Рефракция (преломление света) // Большая советская энциклопедия  : [в 30 т.]  / гл. ред. А. М. Прохоров . — 3-е изд. — М.  : Советская энциклопедия, 1969—1978.
  3. Рефракция молекулярная // Большая советская энциклопедия  : [в 30 т.]  / гл. ред. А. М. Прохоров . — 3-е изд. — М.  : Советская энциклопедия, 1969—1978.
  4. Рефракция (света в атмосфере) // Большая советская энциклопедия  : [в 30 т.]  / гл. ред. А. М. Прохоров . — 3-е изд. — М.  : Советская энциклопедия, 1969—1978.

Ссылки

© 2014-2020 ЯВИКС - все права защищены.
Наши контакты/Карта ссылок