Василиса▶ Я жду вашего обращения. Что Вы хотите узнать?
Логотип
Пример простой поверхности

Пове́рхность в геометрии и топологии  — двумерное топологическое многообразие . Наиболее известными примерами поверхностей являются границы геометрических тел в обычном трёхмерном евклидовом пространстве. С другой стороны, существуют поверхности (например, бутылка Клейна ), которые нельзя вложить в трёхмерное евклидово пространство без привлечения сингулярности или самопересечения.

«Двумерность» поверхности подразумевает возможность реализовать на ней метод координат , хотя и необязательно для всех точек. Так, поверхность Земли (в идеале) представляет собой двумерную сферу , широта и долгота каждой точки которой являются её координатами (за исключением полюсов и 180-го меридиана ).

Концепция поверхности применяется в физике , инженерном деле , компьютерной графике и прочих областях при изучении физических объектов. Например, анализ аэродинамических качеств самолёта базируется на обтекании потоком воздуха его поверхности.

Способы задания

Поверхность определяется как множество точек , координаты которых удовлетворяют определённому виду уравнений:

Если функция непрерывна в некоторой точке и имеет в ней непрерывные частные производные, по крайней мере одна из которых не обращается в нуль, то в окрестности этой точки поверхность, заданная уравнением (1), будет правильной поверхностью .

Помимо указанного выше неявного способа задания , поверхность может быть определена явно , если одну из переменных, например, z, можно выразить через остальные:

Также существует параметрический способ задания. В этом случае поверхность определяется системой уравнений:

Понятие о простой поверхности

Основная статья: Простая поверхность

Интуитивно простую поверхность можно представить как кусок плоскости , подвергнутый непрерывным деформациям ( растяжениям, сжатиям и изгибаниям ).

Более строго, простой поверхностью называется образ гомеоморфного отображения (то есть взаимно однозначного и взаимно непрерывного отображения) внутренности единичного квадрата. Этому определению можно дать аналитическое выражение.

Пусть на плоскости с прямоугольной системой координат u и v задан квадрат , координаты внутренних точек которого удовлетворяют неравенствам 0 < u < 1, 0 < v < 1. Гомеоморфный образ квадрата в пространстве с прямоугольной системой координат х, у, z задаётся при помощи формул х = x(u, v), у = y(u, v), z = z(u, v) ( параметрическое задание поверхности ). При этом от функций x(u, v), y(u, v) и z(u, v) требуется, чтобы они были непрерывными и чтобы для различных точек (u, v) и (u', v') были различными соответствующие точки (x, у, z) и (x', у', z').

Примером простой поверхности является полусфера. Вся же сфера не является простой поверхностью . Это вызывает необходимость дальнейшего обобщения понятия поверхности.

Подмножество пространства, у каждой точки которого есть окрестность, являющаяся простой поверхностью , называется правильной поверхностью .

Поверхность в дифференциальной геометрии

В дифференциальной геометрии исследуемые поверхности обычно подчинены условиям, связанным с возможностью применения методов дифференциального исчисления. Как правило, это — условия гладкости поверхности, то есть существования в каждой точке поверхности определённой касательной плоскости, кривизны и т. д. Эти требования сводятся к тому, что функции, задающие поверхность, предполагаются однократно, дважды, трижды, а в некоторых вопросах — неограниченное число раз дифференцируемыми или даже аналитическими функциями . При этом дополнительно накладывается условие регулярности.

Случай неявного задания . Поверхность, заданная уравнением , является гладкой регулярной поверхностью , если , функция непрерывно дифференцируема в своей области определения , а её частные производные одновременно не обращаются в нуль (условие правильности) на всём множестве :

Случай параметрического задания . Зададим поверхность векторным уравнением , или, что то же самое, тремя уравнениями в координатах:

Эта система уравнений задаёт гладкую регулярную поверхность , если выполнены условия:

  • система устанавливает взаимно однозначное соответствие между образом и прообразом ;
  • функции непрерывно дифференцируемы в ;
  • выполнено условие невырожденности:

Геометрически последнее условие означает, что векторы нигде не параллельны.

Координатная сетка на сфере

Параметры u, v можно рассматривать как внутренние координаты точек поверхности. Фиксируя одну из координат, мы получаем два семейства координатных кривых , покрывающих поверхность координатной сеткой.

Случай явного задания . Поверхность может быть определена как график функции ; тогда является гладкой регулярной поверхностью , если функция дифференцируема. Этот вариант можно рассматривать как частный случай параметрического задания: .

Касательная плоскость

Касательная плоскость в точке поверхности.

Касательная плоскость в точке гладкой поверхности — это плоскость, имеющая максимальный порядок соприкосновения с поверхностью в этой точке. Эквивалентный вариант определения: касательная плоскость есть плоскость, содержащая касательные ко всем гладким кривым, проходящим через эту точку.

Пусть гладкая кривая на параметрически заданной поверхности задана в виде:

.

Направление касательной к такой кривой даёт вектор:

Отсюда видно, что все касательные ко всем кривым в данной точке лежат в одной плоскости, содержащей векторы , которые мы выше предположили независимыми.

Уравнение касательной плоскости в точке имеет вид:

( смешанное произведение векторов).

В координатах уравнения касательной плоскости для разных способов задания поверхности приведены в таблице:

касательная плоскость к поверхности в точке
неявное задание
явное задание
параметрическое задание

Все производные берутся в точке .

Метрика и внутренняя геометрия

Вновь рассмотрим гладкую кривую:

.

Элемент её длины определяется из соотношения:

,

где .

Эта квадратичная форма называется первой квадратичной формой и представляет собой двумерный вариант метрики поверхности. Для регулярной поверхности её дискриминант во всех точках. Коэффициент в точке поверхности тогда и только тогда, когда в этой точке координатные кривые ортогональны. В частности, на плоскости с декартовыми координатами получается метрика ( теорема Пифагора ).

Геликоид
Катеноид

Метрика не определяет однозначно форму поверхности. Например, метрики геликоида и катеноида , параметризованных соответствующим образом, совпадают, то есть между их областями существует соответствие, сохраняющее все длины ( изометрия ). Свойства, сохраняющиеся при изометрических преобразованиях, называются внутренней геометрией поверхности. Внутренняя геометрия не зависит от положения поверхности в пространстве и не меняется при её изгибании без растяжения и сжатия (например, при изгибании цилиндра в конус ) .

Метрические коэффициенты определяют не только длины всех кривых, но и вообще результаты всех измерений внутри поверхности (углы, площади, кривизна и др.). Поэтому всё, что зависит только от метрики, относится к внутренней геометрии.

Нормаль и нормальное сечение

Векторы нормали в точках поверхности

Одной из основных характеристик поверхности является её нормаль  — единичный вектор, перпендикулярный касательной плоскости в заданной точке:

.

Знак нормали зависит от выбора координат.

Сечение поверхности плоскостью, содержащей нормаль поверхности в заданной точке, образует некоторую кривую, которая называется нормальным сечением поверхности. Главная нормаль для нормального сечения совпадает с нормалью к поверхности (с точностью до знака).

Если же кривая на поверхности не является нормальным сечением, то её главная нормаль образует с нормалью поверхности некоторый угол . Тогда кривизна кривой связана с кривизной нормального сечения (с той же касательной) формулой Мёнье :

Координаты орта нормали для разных способов задания поверхности приведены в таблице:

Координаты нормали в точке поверхности
неявное задание
явное задание
параметрическое задание

Здесь .

Все производные берутся в точке .

Кривизна

Для разных направлений в заданной точке поверхности получается разная кривизна нормального сечения, которая называется нормальной кривизной ; ей приписывается знак плюс, если главная нормаль кривой идёт в том же направлении, что и нормаль к поверхности, или минус, если направления нормалей противоположны.

Вообще говоря, в каждой точке поверхности существуют два перпендикулярных направления и , в которых нормальная кривизна принимает минимальное и максимальное значения; эти направления называются главными . Исключение составляет случай, когда нормальная кривизна по всем направлениям одинакова (например, у сферы или на торце эллипсоида вращения), тогда все направления в точке — главные.

Поверхности с отрицательной (слева), нулевой (в центре) и положительной (справа) кривизной.

Нормальные кривизны в главных направлениях называются главными кривизнами ; обозначим их и . Величина:

называется гауссовой кривизной , полной кривизной или просто кривизной поверхности. Встречается также термин скаляр кривизны , который подразумевает результат свёртки тензора кривизны ; при этом скаляр кривизны вдвое больше, чем гауссова кривизна.

Гауссова кривизна может быть вычислена через метрику, и поэтому она является объектом внутренней геометрии поверхностей (отметим, что главные кривизны к внутренней геометрии не относятся). По знаку кривизны можно классифицировать точки поверхности (см. рисунок). Кривизна плоскости равна нулю. Кривизна сферы радиуса R всюду равна . Существует и поверхность постоянной отрицательной кривизны — псевдосфера .

Геодезические линии, геодезическая кривизна

Основная статья: Геодезическая

Кривая на поверхности называется геодезической линией , или просто геодезической , если во всех её точках главная нормаль к кривой совпадает с нормалью к поверхности. Пример: на плоскости геодезическими будут прямые и отрезки прямых, на сфере — большие круги и их отрезки.

Эквивалентное определение: у геодезической линии проекция её главной нормали на касательную плоскость есть нулевой вектор. Если кривая не является геодезической, то указанная проекция ненулевая; её длина называется геодезической кривизной кривой на поверхности. Имеет место соотношение:

,

где  — кривизна данной кривой,  — кривизна нормального сечения поверхности с той же касательной.

Геодезические линии относятся к внутренней геометрии. Перечислим их главные свойства.

  • Через данную точку поверхности в заданном направлении проходит одна и только одна геодезическая.
  • На достаточно малом участке поверхности две точки всегда можно соединить геодезической, и притом только одной. Пояснение: на сфере противоположные полюса соединяет бесконечное количество меридианов, а две близкие точки можно соединить не только отрезком большого круга, но и его дополнением до полной окружности, так что однозначность соблюдается только в малом.
  • Геодезическая является кратчайшей. Более строго: на малом куске поверхности кратчайший путь между заданными точками лежит по геодезической.

Площадь

Ещё один важный атрибут поверхности — её площадь , которая вычисляется по формуле:

Здесь .

В координатах получаем:

явное задание параметрическое задание
выражение для площади

Поверхность в топологии

Ориентация

Лента Мёбиуса.

Также важной характеристикой поверхности является её ориентация .

Поверхность называется двусторонней , если на всей её протяжённости она обладает непрерывным вектором нормали. В противном случае поверхность называют односторонней .

Ориентированной называется двусторонняя поверхность с выбранным направлением нормали.

Примерами односторонних и, следовательно, неориентируемых поверхностей являются бутылка Клейна или лист Мёбиуса .

Типы поверхностей

  • Замкнутая поверхность — компактная поверхность без границы.
  • Открытая поверхность — полная некомпактная поверхность без границы; в случае вложенной поверхности дополнительно предполагается, что она образует замкнутое множество в объемлющем пространстве.
  • ориентируемые и неориентируемые поверхности

Обобщение

О многомерных аналогах теории см.:

Литература

Примечания

  1. , Глава 7.

Ссылки

© 2014-2019 ЯВИКС - все права защищены.
Наши контакты/Карта ссылок